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Abstract

I propose a formal method for decomposing frequency-domain informa-
tion about latent variables in dynamic models. These models describe the
joint probability distribution of observed and latent variables. Information
transfer from observed to latent variables is quantified as the reduction in uncer-
tainty between the prior and posterior distributions of a given latent variable.
By employing frequency-domain techniques, the total information transfer is
disaggregated into frequency-specific contributions and the contributions of
individual observed variables. This spectral decomposition provides researchers
with a tool to trace the origins of information about shocks and other latent
variables in structural macroeconomic models, thereby enhancing transparency
in model estimation. I demonstrate the method’s utility through applications
to three recent studies.
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There is nothing like a latent variable to stimulate the imagination.
A. Goldberger, quoted by Chamberlain (1990)

1 Introduction

The estimation of latent variables is a pervasive challenge in macroeconomic re-
search, requiring the integration of theoretical models with empirical data. Examples
abound and include endogenously determined variables such as potential output
and natural rates of interest or unemployment, alongside a plethora of exogenous
shocks driving business cycle fluctuations in modern macroeconomic models. The
inherently unobservable nature of these variables necessitates estimating models that
explicitly describe their joint dynamics with observable quantities. Correctly specified
and accurately measured latent endogenous variables and structural shocks are key
requirements for macroeconomic models to serve as effective tools for policy analysis
and credible story-telling devices.

This paper demonstrates how to perform a frequency-domain decomposition of
information about latent variables in dynamic economic models. The decomposi-
tion reveals both where in the frequency spectrum this information predominantly
resides and the relative contributions of individual observed variables. The goal
of the analysis is to enhance researchers’ understanding of a model’s implications
regarding the sources of information about unobservable quantities. In doing so, the
paper contributes to the emerging literature aimed at improving the transparency of
structural estimation in macroeconomic research.

Understanding where information about estimated quantities of interest originates
in the data is a key question in the estimation of structural models. Compared to
reduced-form estimation, structural models make it particularly challenging to link
specific features of the data, on the one hand, to individual estimated parameters
or latent variables, on the other. This opacity makes it difficult to understand
how modeling assumptions influence estimation results, thereby hindering readers’
ability to assess the credibility of the research findings. Enhancing transparency
about how information is derived from observed data helps mitigate this challenge,
enabling readers who suspect model misspecification along certain dimensions to
better understand its implications.1 The frequency domain perspective is particularly
relevant here, as researchers often hold differing views on which data frequencies can
be adequately represented by a given model. For example, fitting data contaminated

1See Andrews et al. (2020) and the references therein for a broader perspective on this topic.
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by high-frequency noise will distort the estimation of models that fail to account
for discrepancies between model variables and observed series. Similarly, models
designed to explain business cycle fluctuations may lack mechanisms to account for
low-frequency variations in the data used to estimate them, leading to contamination
of information from the lower end of the spectrum. A similar issue arises when models
that do not account for seasonality are fitted to data exhibiting seasonal patterns.

The existing literature presents different and sometimes contradictory approaches
for dealing with these challenges. For instance, there is no consensus among prac-
titioners on whether to allow for measurement errors in commonly used series or
how to handle long-term trends when estimating structural macroeconomic models.
Greater transparency about how information from various parts of the spectrum
contributes to the estimation of latent variables is thus essential. It enables readers,
who may hold differing views on the adequacy of a model to represent the data, to
assess the potential consequences of misspecification based on the relative importance
of frequencies they suspect are contaminated for identifying those variables.

The work most closely related to this paper is Iskrev (2019), where the question
regarding the sources of information about latent variables is treated in the time
domain. In that paper, the amount of information from observable variables about
latent variables is quantified by comparing prior and posterior probability distributions
and employing information-theoretic measures of uncertainty and information gain.
Analysis in the time domain preserves information about the temporal order of
observable data in relation to latent variables and enables the study of information
transfer between variables with arbitrary temporal patterns. Specifically, one can
evaluate how each observed variable contributes information from any subperiod of the
sample. This facilitates readers’ assessment of model misspecification consequences
when they suspect certain observed series diverge from their model counterparts
during specific sample periods.2

The work most closely related to this paper is Iskrev (2019), where the question
regarding the sources of information about latent variables is treated in the time
domain. In that paper, the amount of information from observable variables about
latent variables is quantified by comparing prior and posterior probability distributions

2One example where this could be useful is in estimating monetary models with data from
periods when the zero lower bound on interest rates is binding and non-conventional monetary
policy measures are in place. One approach in the literature addresses this issue by using the
so-called “shadow interest rate” as an observed counterpart of the policy rate in theoretical models
(see e.g. Giannone et al. (2016)). Estimated shadow rates are not constrained by the effective lower
bound and typically coincide with observed policy rates when the bound is not binding. A potential
concern with this approach is that information from the shadow rate series becomes contaminated
during periods of substantial estimation uncertainty.
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and employing information-theoretic measures of uncertainty and information gain.
Analysis in the time domain preserves information about the temporal order of the
observable data in relation to the latent variables and allows to study the transfer of
information between variables with arbitrary temporal patterns. In particular, one
can evaluate the contribution of information from any observed variable originating in
any subperiod of the sample. This can facilitate the assessment of the consequences
of model misspecification by readers who suspect that some observed series diverge
from the respective model concepts during some part of the sample.3 The information
pertaining to the temporal order of variables is lost completely in the frequency domain.
At the same time, it enables the decomposition of uncertainty and information into
components at varying frequencies. This decomposition reveals both the extent and
spectral location of uncertainty resolution for a given latent variable, as well as the
relative contributions from different observed variables at various frequencies. Such
insights into the distribution of uncertainty and information are not obtainable in
the time domain. While time-domain analysis reveals misspecification with respect
to specific sample periods, frequency domain analysis helps researchers understand
the implications of using information from specific frequency bands that may be
poorly represented by the estimated models. Thus, the time and frequency domain
approaches complement each other.

It is important to emphasize that the analysis described in this paper does
not require models to be solved, estimated, or transformed from the time to the
frequency domain. It can be applied independently of the estimation method. In this
respect, it resembles frequency-domain parameter identification analysis (see, e.g.,
Qu and Tkachenko (2013)) or spectral variance decompositions (see, among many
others, the handbook chapter by Fernández-Villaverde et al. (2016)). Although less
common in the empirical literature, spectral methods for estimating and evaluating
macroeconomic models have been advocated in several influential studies, including
Hansen and Sargent (1993), Watson (1993), Diebold et al. (1998), Christiano and
Vigfusson (2003), Qu and Tkachenko (2012), and Sala (2015).

The paper is also related to a growing literature on the feasibility of recovering
structural shocks using reduced form models. Building upon the work of Hansen and

3One example of where this could be useful is the estimation of monetary models with data
including the period when the zero lower bound on interest rates is binding and non-conventional
monetary policy measures are in place. One approach in the literature for dealing with this issue is
to use the so-called “shadow interest rate” as an observed counterpart of the policy rate in theoretical
models (see e.g. Giannone et al. (2016)). Estimated shadow rates are not constrained by the effective
lower bound and usually coincide with the observed policy rates in the period when the bound is
not binding. A possible concern about this approach is that the information from the shadow rate
series is contaminated in the part of the sample where there is a substantial estimation uncertainty.
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Sargent (1980, 1991) and Lippi and Reichlin (1993, 1994), most research on this topic
has focused on the issue of invertibility (or fundamentalness) in structural vector
autoregressions, i.e. whether shocks from general equilibrium models can be recovered
from VAR residuals (see Alessi et al. (2011) and Giacomini (2013) for useful overviews
of this literature). Conditions for invertibility have been analyzed by Fernandez-
Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013), Franchi and
Paruolo (2015)), while tests for non-invertibility of structural VARs are developed in
Giannone and Reichlin (2006) and Forni and Gambetti (2014). Invertibility issues
that are specific to DSGE models with news shocks are discussed in Leeper et al.
(2013) and Blanchard et al. (2013). More recently, Soccorsi (2016) and Sala et al.
(2016) have proposed measures of the degree of non-invertibility that quantify the
discrepancies between true shocks and shocks obtained using non-fundamental VARs.4

In another recent paper Chahrour and Jurado (2022) distinguish between invertibility
and what they call “recoverability” – the latter defined as the feasibility of recovering
structural shocks from all leads and lags of the observables variables. They argue
that recoverability is often more relevant for applied research and provide a necessary
and sufficient condition for checking shock recoverability in linear models.

Like that literature, the analysis in this paper can be used to assess whether
shocks are recoverable from a given set of observed variables. Additionally, as in
Soccorsi (2016) and especially Sala et al. (2016), it provides a measure of the degree
of recoverability of any individual shock or endogenous latent variable. The proposed
spectral measures of information gain are defined for each unobserved variable,
quantifying how much prior uncertainty about it, within a given frequency band, is
resolved by observing specific model variables.

While existing research on invertibility focuses on the usefulness of VAR-based tools
for the empirical validation of structural models, the analysis presented here aims to
explore how structural macroeconomic models characterize the transfer of information
between observed and unobserved variables across different frequencies. Identifying
the principal sources of information is of primary interest, rather than measuring the
total information about a given shock or endogenous latent variable. To this end, I
define and apply measures of frequency band-specific conditional information gains,
which quantify the additional information contributed by a subset of variables at
specific frequency bands, given the information contained in the remaining observed
variables. As demonstrated in the application section, the conclusions can vary
significantly depending on the choice of conditional variables.

4Simulation evidence that non-invertible VARs may in some cases produce good approximations
of the true structural shocks is presented in Sims (2012) and Beaudry et al. (2015).
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The remainder of the paper is organized as follows. Section 2 reviews relevant
information-theoretic and frequency domain concepts, defines measures of information
gains from observables with respect to latent variables, and demonstrates how these
measures can be evaluated for linear Gaussian DSGE models. It also shows how
the measures can be used to decompose information about latent variables across
frequencies and observed variables. This decomposition identifies the primary sources
of information about any latent variable of interest, enhancing the transparency of
structural macroeconomic model estimation. Section 3 illustrates the methodology
through three applications. The first is a small-scale New-Keynesian model used by
Uribe (2022) to study monetary policy shocks that generate neo-Fisherian dynamics –
shocks that move interest rates and inflation in the same direction over the short run.
The second is a medium-scale New Keynesian model estimated by Justiniano et al.
(2011) to assess the importance of investment shocks in driving business cycle fluctu-
ations. The third considers another medium-scale New Keynesian model presented
in Angeletos et al. (2018) to illustrate their method for augmenting macroeconomic
models with higher-order belief dynamics. In all applications, I examine the sources
of information about structural shocks. These examples illustrate different aspects of
the proposed information decomposition while demonstrating its utility in increasing
model estimation transparency. Section 4 concludes. An Online Appendix provides
additional model specifications and results.

2 Methodology

This section has three objectives. First, it introduces basic information-theoretic
concepts and defines a measure of information gain for variables with a multivariate
complex Gaussian distribution. Second, it reviews key properties of the spectral
representation of a stationary Gaussian vector process and presents frequency domain
measures of information gain. Third, it demonstrates how to apply these measures to
DSGE models to evaluate the information contributions of observed variables with
respect to latent variables across frequencies.

2.1 Quantifying information gains

Consider a (ny + 1)-dimensional random vector z = [y′, x]′ with joint probability
density function f(y, x). How much information about x is gained by observing a
realization of y? Information theory provides the framework and tools to answer
such questions. Entropy measures the uncertainty associated with a random variable,
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while mutual information quantifies the information shared between two random
variables. Formally, if f(x) is the marginal probability density function of x with
support Sx, the entropy H(x) of f(x) is defined as

H(x) = −
∫
Sx

f(x) ln (f(x)) dx = − E ln f(x). (2.1)

The amount of information about x is measured by the reduction in uncertainty –
that is, the entropy H(x) – relative to some base distribution. The mutual information
between random variables y and x is defined as

I(y, x) =
∫
Sy

∫
Sx

f(y, x) ln f(y, x)
f(y)f(x)dydx (2.2)

where Sy is the support of y. The information interpretation of (2.2) follows from
the fact that it can be expressed in terms of entropy as

I(y, x) = H(x) − H(x|y). (2.3)

where H(x|y) = − E ln f(x|y) is the entropy of the conditional probability density
function of x given y. Thus, I(y, x) represents the reduction in uncertainty about
x from observing y.5 As shown in Granger and Lin (1994), H(x) ≥ H(x|y) with
equality if and only if f(y, x) = f(y)f(x). Therefore, unless y and x are independent,
observing y provides information about x. For a partition of y into two sub-vectors
y1 and y2, the conditional mutual information of x and y1 given y2 can be expressed
as

I(y1, x|y2) = H(x|y2) − H(x|y1,y2) (2.4)

The conditional mutual information measures the additional reduction in uncertainty
about x achieved by observing y1, given that y2 is already observed. Now, let the joint
density function f(y, x) be the (ny + 1)-dimensional complex Gaussian distribution,

NC

 0

0

 ,
 Σyy Σyx

Σxy Σxx

 (2.5)

Then, both the marginal distribution of x and the conditional distribution of x given
y are univariate complex Gaussian distributions. Their covariances are given by Σxx

and Σx|y = Σxx − ΣxyΣ
−1
yyΣyx, respectively. Using this result, we can show that the

5This is analogous to measuring the information gain in the posterior compared to the prior
distribution of parameters in Bayesian analysis, see Lindley (1956).
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mutual information of y and x is

I(y, x) = H(x) − H(x|y) = .5 ln
(

Σxx

Σx|y

)
(2.6)

From H(x) ≥ H(x|y) it follows that mutual information is positive y and x are
dependent, and zero when they are independent. In the case of perfect dependence,
where there exists a one-to-one function g such that x = g(y), observing y is equivalent
to observing x. This results in Σx|y = 0 and I(y, x) = ∞. A common practice is
to normalize this measure to the interval [0, 1]. This can be achieved using the
following monotonous increasing transformation (see e.g. Joe (1989) or Granger and
Lin (1994))

I∗(y, z) = 1 − exp (−2I(y, z)) (2.7)

Applying this transformation to (2.6) results in the following measure of information
gain:

IGy→x =
(

Σxx − Σx|y

Σxx

)
× 100, (2.8)

The interpretation of IGy→x is the following: it measures the percent reduction in
uncertainty about x from observing vector y, relative to the unconditional (prior)
uncertainty about x. Similarly, for a partition of y into y1 and y2, the conditional
information gain of y1 with respect to x given y2 is defined as

IGy1 →x|y2
=
(
Σx|y2

− Σx|y

Σxx

)
× 100, (2.9)

The interpretation of IGy1 →x|y2
is the following: it measures the percent reduction

in the remaining uncertainty about x achieved by observing y1 after y2 is known,
relative to the unconditional uncertainty about x.

2.2 Information gains in the frequency domain

Let zt ∈ Rnz for t ∈ Z be nz−dimensional stationary Gaussian time series with

E zt = 0 t ∈ Z (2.10)

cov (zt, zt−h) = Γ (h) t, h ∈ Z (2.11)

When Z = [z′
1, z

′
2, . . . ,z

′
T ]′ represents a T × nz−dimensional realization the pro-
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cess, the joint, marginal, and conditional distributions of any subset of Z components
are Gaussian. Thus, the time-domain information gain measures from the previous
section can directly quantify the information gained about any realization of a z

component from observing a sample of realizations of other process components (see
Iskrev (2019)).

In the frequency domain, the information gains analysis proceeds by applying the
discrete Fourier transform to the values of Z:

Z(ωj) = (2πT )−1/2
T∑

t=1
zte

−itωj (2.12)

for the Fourier frequencies ωj = 2πj/T , where j ∈ {j ∈ Z : −π < 2πj/T ≤ π}.
The linearity of the discrete Fourier transform preserves joint Gaussianity. More-

over, Z(ωj) behave asymptotically as independent complex Gaussian random variables
with zero mean and covariance matrix f(ωj), where fzz(ω) ∈ Cnz×nz represents the
spectral density matrix of z(t) at frequency ω (see Brillinger (1981, Theorem 4.4.1)),

fzz(ω) = (2π)−1
∞∑

h=−∞
Γ(h)e−ihω (2.13)

The asymptotic independence of the Fourier coefficients Z(ωj) across frequencies
enables frequency-specific information gain analysis. Specifically, there is (asymp-
totically) no information about a series component at frequency ωj derived from
components at any other frequency ωl, l ̸= j. The complex Gaussian distribution
further allows information analysis at each frequency ω using the information gain
measures from Section 2.1. To be more concrete, consider partitioning zt into a
ny−dimensional vector yt and a scalar xt, with y(ω) and x(ω) representing their
respective discrete Fourier transforms at frequency ω ∈ (−π, π]. The spectral density
matrix of [y′

t, xt]′ is given by

fzz(ω) =
 fyy(ω) fyx(ω)
fxy(ω) fxx(ω)

 (2.14)

and the frequency-specific information gain of y(ω) with respect to x(ω) is6

IGy→x(ω) =
(
fxx(ω) − fx|y(ω)

fxx(ω)

)
× 100 (2.15)

6As in the time domain, there is a natural connection between the measures of spectral information
gains and the frequency domain version of mutual information, see Brillinger (2002) and Brillinger
and Guha (2007).
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where fx|y(ω) = fxx(ω) − fxy(ω)f−1
yy (ω)fyx(ω) is the partial spectrum of x given y

(Priestley (1981)).
Similarly, for a partition of yt into y1t and y2t with respective discrete Fourier

transforms y1(ω) and y2(ω), the frequency-specific conditional information gain from
y1(ω) about x(ω) given y2(ω) is

IGy1 →x|y2
(ω) =

(
fx|y2

(ω) − fx|y(ω)
fxx(ω)

)
× 100 (2.16)

The interpretation of IGy→x(ω) and IGy1 →x|y2
is the same as before, except that now

information is defined in terms of the reduction of uncertainty about x at a given
frequency ω due to information in y (or conditionally, in y1) at the same frequency.

In practice, we are usually interested not in a single frequency but rather in a band
of frequencies, such as low, business cycle, or high frequencies. Measures of frequency
band-specific information gain can be obtained by replacing the frequency-specific
spectrum and conditional spectrum of x in (2.15) and (2.16) with their integrated
versions,

IGy→x(ω) =
(
fxx(ω) − fx|y(ω)

fxx(ω)

)
× 100 (2.17)

IGy1 →x|y2
(ω) =

(
fx|y2

(ω) − fx|y(ω)
fxx(ω)

)
× 100 (2.18)

where ω = {ω : ω ∈ [ω, ω] ∪ [−ω,−ω]} denotes the frequency band of interest,
fxx(ω) =

∫
ω∈ω

fxx(ω)dω, and fx|y(ω) =
∫

ω∈ω
fx|y(ω)dω. The interpretation remains

the same, except that now the uncertainty and information about x are with respect
to the frequency band ω. Note that IGy→x(ω) can be written also as

IGy→x(ω) =
∫

ω∈ω
IGy→x(ω) fxx(ω)

fxx(ω)dω (2.19)

The information gain for a frequency band ω is thus a weighted sum of the frequency-
specific information gains, where the weights equal each frequency’s contribution to
the total variance of x in ω. Similarly, the conditional information gain (2.18) is a
weighted sum of the frequency-specific conditional information gains.

A special case of the band-specific information gain is when ω spans the full
spectrum, with ω = 0 and ω = π. Let ω = {ω : ω ∈ [0, π] ∪ (0,−π]}. In this case,
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the information gain takes the form:

IGy→x(ω) =
(

var(xt) − var(xt|yt−τ , τ ∈ Z)
var(xt)

)
× 100 (2.20)

Thus, beyond its obvious frequency-domain interpretation, this measure also has a
time-domain interpretation: it represents the percent reduction of the unconditional
variance of xt from observing the infinite sequence of past, present, and future values
of yt. Similarly, when evaluated over the full spectrum, the conditional information
gain from y1 about x given y2 is

IGy1 →x|y2
(ω) =

(
var (xt|y2t−τ , τ ∈ Z) − var(xt|yt−τ , τ ∈ Z)

var(xt)

)
× 100 (2.21)

The interpretation of (2.21) is the following: it measures the percent reduction in
the remaining uncertainty about xt achieved by observing the infinite sequence of
past, present, and future values of y1, given that the corresponding sequence of y2 is
already known, relative to the unconditional uncertainty about xt

Example To fix ideas, consider the following example. A latent variable of interest
xt follows a stationary AR(1) process:

xt = αxt−1 + εxt (2.22)

The observed variables y1t and y2t are noisy measures of xt, given by

y1t = xt + e1t, (2.23)

y2t = xt + e2t (2.24)

where e1t = βe1t−1 +
√

1 − β2ε1t, e2t = ε2t and εxt, ε1t, and ε2t are all i.i.d with mean
0 and variance 1.

Let α = .5, β = .9. Panel (a) of Figure 1 show the logs of the prior (unconditional)
and posterior (conditional) spectral densities of x. Each point on a spectral density
curve represents the contribution of the corresponding frequency to the variance
of x. The area under each curve represents the total variance of x under different
information scenarios: observing nothing, observing either y1 or y2, or observing both
y = [y1, y2]. Since both variables are informative about x, the posterior spectral
densities lie below the prior density. The lowest uncertainty occurs when both y1

and y2 are observed. The area between a prior and posterior spectral density curves
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represents the reduction of uncertainty – that is, the information about x.7

Panel (b) displays the frequency-specific information gains, defined as the percent
reduction in uncertainty. The figure reveals that y1 provides relatively less information
about low frequencies compared to y2, but more information across the rest of the
spectrum, particularly at very high frequencies. This pattern stems from the different
spectral profiles of the noise terms: while var (e1t) = var (e2t) = 1 implies equal total
noise in y1 and y2, the persistent AR(1) process e1t primarily contaminates very low
frequencies, whereas the white noise e2 contributes uniformly across all frequencies.

The conditional information gains can be determined by comparing the marginal
to the joint information gain: IGyi →x|yj

= IGy→x − IGyj →x for i, j ∈ [1, 2]. At
frequencies close to zero, IGy→x ≈ IGy2 →x, indicating that observing y1 provides little
additional information about the low frequencies of x when y2 is known. Similarly,
given y1, observing y2 adds little or no information about high frequencies of x.
The smaller conditional information compared to marginal information implies that
some information about x is available from either variable – once one is observed,
information from parts of the other’s spectrum becomes redundant.

For a trivial example of a situation where the conditional information exceeds the
marginal one, consider the case when e1 is observable. Observing e1 alone provides
no information about x. However, observing both y1 and e1 is equivalent to observing
x directly, yielding 100% information gain. Therefore, the conditional information
gains of both y1 and e1 exceed their marginal gains.

7Since the figure is in logs, the area represents the log ratio between prior and posterior uncertainty.
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Figure 1: Frequency-specific uncertainty and information about the latent variable x in
the system described by (2.22) - (2.24). Panel (a) shows prior and posterior spectral
densities of x. Panel (b) shows the respective information gains.
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2.3 DSGE models

A linearized DSGE model can be written as a recursive equilibrium law of motion in
the following system of equations:

yt = C(θ)vt−1 + D(θ)ut (2.25)

vt = A(θ)vt−1 + B(θ)ut (2.26)

ut = G(θ)ut−1 + εt, εt ∼ N (0,Σε(θ)) (2.27)

where yt is a ny-dimensional vector of observed variables, vt is a nv-dimensional
vector of endogenous state variables, ut is a nu-dimensional vector of exogenous state
variables, and εt is a nu-dimensional vector of exogenous shocks. The matrices A,
B, C, D, and G are functions of the model’s structural parameters, collected in the
nθ-dimensional vector θ.

In practice, researchers may be interested in various latent variables: endogenous
variables like output gap, exogenous shocks such as total factor productivity (TFP),
or innovations to exogenous shocks like TFP innovations. Using the notation from
sections 2.1 and 2.2, the latent variable xt corresponds to an element of vt, ut, or
εt, while yt represents the vector of observed variables. Computing unconditional
and conditional information gains requires the spectral and cross-spectral densities of
xt, yt, and individual elements of y. These can be derived from the joint spectral
density matrix of zt = [y′

t,v
′
t,u

′
t, ε

′
t]′, given by (see Uhlig (1999)):

fzz(ω) = 1
2πW (ω,θ)Σε(θ)W (ω,θ)∗ (2.28)

where

W (ω,θ) =


C(θ)e−iω D(θ) Ony ,nu

Inv Onv ,nu Onv ,nu

Onu,nv Inu Onv ,nu

Onu,ny Onu,nu Inu

× (2.29)


(Inv − A(θ)e−iω)−1

B(θ) (Inu − G(θ)e−iω)−1

(Inu − G(θ)e−iω)−1

Inu


and the asterisk denotes matrix transposition and complex conjugation.

In business cycle research, it is typical to divide the spectrum into three non-
overlapping intervals: business cycle frequencies with periodicity between 6 and 32
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quarters (as is standard in the literature, for example Stock and Watson (1999)), and
frequencies above and below that interval, labeled as low and high frequencies, respec-
tively. Let ωBC , ωL, and ωH denote these frequency bands. The total information
gain from yt about xt can be decomposed as follows:

IGy→x(ω) = IGy→x(ωL)fxx(ωL)
fxx(ω) + IGy→x(ωBC)fxx(ωBC)

fxx(ω) (2.30)

+ IGy→x(ωH)fxx(ωH)
fxx(ω)

The total information gain is thus a weighted sum of band-specific information gains,
where the weights equal each band’s contribution to the total variance of x.

Decomposing information gains across frequency bands is feasible because the
components within each band are mutually independent. However, due to the correla-
tion among variables in y, the overall information about x cannot be decomposed into
independent contributions of individual observed variables. Instead, we can measure
the marginal contribution from each observed variable yi, as well as its conditional
contribution given the information in other observed variables yj ⊂ y−i ≡ {y \ y

i
}.

For any frequency band ω, the following decomposition holds:

IGy→x(ω) = IGyi →x|y−i
(ω) + IGy−i →x(ω) (2.31)

The first term on the right-hand side represents information in yi about x that is not
contained in y−i. This includes both information unique to yi (independent from
y−i) and information that emerges from observing yi together with y−i. Meanwhile,
any information about x that is shared between yi and y−i is captured by the second
term in (2.31).

Example (continued) Figure 2 illustrates the decomposition of the prior and
posterior uncertainty about x into contributions from the low, business cycle, and the
high frequencies. Observing either y1 or y2 reduces uncertainty by the same amount,
63%. However, the contributions from different frequency bands vary significantly.
When y1 is observed, approximately 26% of the information gain originates from the
high frequencies, compared to only 14% when y2 is observed. Conversely, the low
frequencies contribute 6% with y1 and over 14% with y2. For both variables, the
business cycle frequencies provide the largest share of information, contributing 30%
and 34% for y1 and y2, respectively. When both variables are observed, the total
reduction in uncertainty increases to 82%, with contributions of 15%, 40%, and 27%
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from the low, business cycle, and the high frequencies, respectively.

prior y1 y2 y
0

20

40

60

80

100

%

low
BC
high

Figure 2: Contributions from the low, business cycle, and high frequencies to the prior
and posterior uncertainty about x.
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3 Applications

In this section, I present three examples of application of the proposed method to
estimated macroeconomic models. The first two applications involve small- and
medium-scale New Kaynesian models taken from Uribe (2022) and Justiniano et al.
(2011). Considering these models allows me to illustrate different elements of the
analysis in a complementary fashion. The model of Uribe (2022) is much smaller,
with only three observed variables, which makes it possible to present fully results
regarding information interactions among those variables. This is not practicable in
the case of the Justiniano et al. (2011) model, where I present only selected results
and leave the rest for the Appendix. Another important difference is that the Uribe
(2022) has more shocks than observables, and finding out how well each shock can be
recovered is a relevant dimension of the analysis, in addition to investigating the main
sources of information. This is not an issue in the second model, which, with its richer
structure, larger number of shocks and observables, is much more representative of the
medium-scale New Keynesian framework in the DSGE literature. The last example is
another medium-scale New Kaynesian model taken from Angeletos et al. (2018). The
model incorporates many of the features found in other estimated DSGE models, but
dispenses with the usual assumption of rational expectations and common information
about the state of the economy. Furthermore, in contrast to most of the literature, the
model is estimated in the frequency domain using only the business-cycle frequencies.
Therefore, it provides an opportunity to discuss the use and usefulness of the proposed
methodology in applications where there are concerns about model misspecification
in some parts of the spectrum, as is the case in Angeletos et al. (2018).

3.1 Uribe (2022)

Uribe (2022) investigates the nature and empirical importance of monetary policy
shocks that produce neo-Fisherian dynamics, i.e. move interest rates and inflation
in the same direction over the short run. To that end, the author estimates a
standard small-scale New-Keynesian model with price stickiness and habit formation,
augmented with seven structural shocks. Full details about the model can be found
in the original publication. Here I only describe those of its features that are directly
relevant for the analysis which follows.

Firstly, three of the shocks are to monetary policy, which is described by the
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following policy rule:

1 + It

Γt

=
[
A

(
1 + Πt

Γt

)αt ( Yt

Xt

)αy
]1−γI

(
1 + It−1

Γt−1

)γI

ezm
t , (3.1)

where It the nominal interest rate, Yt is aggregate output, Πt is the inflation rate,
Γt is the inflation-target, Xt is a nonstationary productivity shocks, and zm

t is a
stationary interest-rate shock. The inflation target is defined as

Γt = Xm
t e

zm2
t , (3.2)

where Xm
t and zm2

t are permanent and transitory components of the inflation target.
It is assumes that Xm

t and Xt grow at a rates gm
t and gt, respectively.

There are two preference shocks affecting the lifetime utility function of the
representative household, given by

E0

∞∑
t=0

βteξt


[(
Ct − δC̃t−1

) (
1 − eθtht

)χ]1−σ
− 1

1 − σ

, (3.3)

where Ct is consumption, C̃t is the cross sectional average of consumption, ht is hours
worked, ξt is an intertemporal preference shock, and θt is a shock to labor supply.

In addition to Xt, there is also a stationary productivity shock zt, which affects
the production technology according to

Yt = eztXth
α
t , (3.4)

The five stationary shocks (ξt, θt, zt, zm
t , and zm2

t ) and the growth rates of the two
non-stationary shocks (gt and gm

t ) are all assumed to follow first-order autoregressive
processes.

Uribe (2022) estimates the model using quarterly US data on three variables:
per capita output growth (△yt), the interest-rate-inflation differential (rt = it − πt),
and the change in the nominal interest rate (△it). All variables are assumed to be
observed with measurement errors, modeled as Gaussian i.i.d. processes. Thus, there
are ten independent sources of randomness in the data and only three observables.
Clearly, not all, if any, of the latent variables can be recovered fully. The purpose of
the remainder of this section is to determine how well each structural shock can be
recovered and where in the spectrum most of the information comes from, as well
as what are the information contributions of different observed variables overall and
across different frequency bands.
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3.1.1 Information decomposition across frequency bands

Uribe (2022) solves the model by log-linear approximation of the equilibrium condi-
tions around steady state. The linearity of the solution together with the assumption
that the structural innovations and the measurement errors are Gaussian, implies
that the joint distribution of (any subset of) the innovations, shocks, state and
observed variables is also Gaussian. Therefore, the analysis of information gains can
be conducted using the measures introduced in Section 2. In the analysis which
follows I fix the parameter values at the mean of posterior distribution reported in
Uribe (2022, Table 5).

Table 1 presents the total information gains for the seven shocks and their
decompositions into gains from three frequency bands - low, business cycle and high
frequencies, with periodicities of more than 32 quarters, between 6 and 32 quarters
and less than 6 quarters, respectively. The results show that none of the shocks can
be fully recovered from the observed variables. The largest reduction of uncertainty
is with respect to the intertemporal preference shock (ξt) – by about 93%, and the
permanent productivity shock (gt) – by about 85%. The gains with respect to the
three monetary policy-related shocks are between 15% and 18%. The least information
is gained with respect to the labor supply (θt) and the transitory productivity shocks
(zt), with information gains for both of 1.8%.

Table 1: Information decomposition across frequency bands
total low BC high

ξt preference 93.2 70.4 = 96.4 × 0.73 19.5 = 88.4 × 0.22 3.2 = 66.0 × 0.05
θt labor supply 1.8 0.2 = 0.5 × 0.33 1.1 = 2.3 × 0.48 0.5 = 2.9 × 0.18
zt transitory productivity 1.8 0.2 = 0.5 × 0.32 1.1 = 2.2 × 0.49 0.5 = 2.9 × 0.19
gt permanent productivity 83.5 9.3 = 94.9 × 0.10 32.3 = 87.1 × 0.37 42.0 = 78.9 × 0.53
zm

t transitory interest rate 15.5 0.1 = 0.9 × 0.12 3.2 = 7.9 × 0.41 12.2 = 25.7 × 0.47
zm2

t transitory trend inflation 16.5 5.8 = 12.7 × 0.46 9.7 = 23.1 × 0.42 1.0 = 8.3 × 0.12
gm

t permanent trend inflation 18.0 7.2 = 69.4 × 0.10 7.0 = 18.3 × 0.38 3.9 = 7.5 × 0.51

Note: Information gain (IG) measures the reduction of uncertainty (variance) about a shock due
to observing all three observed variables, as a percent of the unconditional uncertainty of the shock.
The contribution from each frequency band to the total IG is shown as the product of the IG for
that band and the fraction of the total variance of the shock originating in each band. Thus, the
units in the last three columns are % = % × variance band

variance total .

Columns 3 to 5 of the table show the information gain contributions from each
frequency band. Following the earlier discussion (see equation (2.30)), the total
contribution in each case is shown as the product of two terms: the band-specific
information gain, which measures the reduction of uncertainty as a percent of the
uncertainty in that band, and the fraction of total uncertainty that originates in the
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given frequency band.
For six of the seven shocks uncertainty is concentrated in either low and business

cycle frequencies, or high and business cycle frequencies. Specifically, in the first
groups are the transitory trend inflation, transitory productivity, and the labor supply
shocks. And in the second are the permanent productivity, transitory interest rate, and
permanent trend inflation shocks. The one exception is the intertemporal preference
shock for which the low frequencies are by far the main source of uncertainty. As can
be expected, the largest gains generally come from parts of the spectrum where prior
uncertainty is larger. There are some notable exceptions, however. In particular, note
that even though the low frequency band accounts for only 10% of the uncertainty
about the permanent trend inflation shock, the information gain contribution from
that band is largest than the business cycle frequency band, which accounts for 38%
of the uncertainty, and much larger than the contribution from the high frequency
band, which accounts for more than half of the total uncertainty. This is due to the
fact that a much larger fraction of the uncertainty in the low frequencies is resolved
by information provided by the observed variables than is the case for the higher
frequencies. Similarly, note that for the labor supply and transitory productivity
shocks, because of the relatively larger information gains from the higher end of
the spectrum, the information contributions from there is larger than from the low
frequencies, even though the low frequencies account for a significantly larger fraction
of the prior uncertainty.

3.1.2 Information contributions by variables

Table 2 shows the conditional information gains for each observed variable for the
full spectrum and the three frequency bands. The largest contribution by far is
from output growth (△yt) with respect to the permanent productivity shock. Note
that the conditional information gain of 83.4% is almost equal to the total gain (all
observables) of 83.5% for that shock (see Table 1). This implies that the other two
variables - the interest rate-inflation differential (rt) and the change in the nominal
interest rate (△it) alone reduce the uncertainty about the permanent productivity
shock by only 0.1%. This result holds for the full spectrum and the individual
frequency bands. Output growth contributes less information for the other shocks,
compared to rt or △it. The contributions of these variables with respect to the two
trend inflation shocks are similar, with rt being relatively more informative for the
transitory trend inflation shock, while △it is more informative for the permanent
one. In addition, rt contributes much more information than either △yt or △it with
respect to the preference shock, while △it is the most informative observable with
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Table 2: Conditional contribution of information
total low BC high

shock △yt rt △it △yt rt △it △yt rt △it △yt rt △it

ξt preference 0.3 26.8 7.2 0.0 26.4 0.8 0.1 0.5 4.1 0.1 0.0 2.3
θt labor supply 0.1 0.1 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
zt transitory productivity 0.1 0.0 1.1 0.0 0.0 0.0 0.1 0.0 0.6 0.0 0.0 0.5
gt permanent productivity 83.4 0.8 5.7 9.3 0.0 0.1 32.2 0.6 2.8 41.9 0.2 2.8
zm

t transitory interest rate 2.2 1.5 9.0 0.0 0.1 0.0 0.4 0.9 0.4 1.8 0.5 8.5
zm2

t transitory trend inflation 1.7 13.0 8.2 0.1 5.5 4.3 1.1 7.3 3.7 0.5 0.2 0.2
gm

t permanent trend inflation 0.5 10.4 15.6 0.0 4.7 7.0 0.2 5.2 5.6 0.3 0.5 3.0

Note: The conditional contribution of information shows additional reduction of uncertainty about
a shock, as a percent of the unconditional uncertainty of the shock, due to observing a variable
given that the other two variables are also observed. The variables are: output growth (△yt),
interest-rate-inflation differential (rt), and the change in the nominal interest rate (△it). Due to
rounding in some cases the band-specific contributions do not add up to the total values.

respect to the transitory interest rate shock, and, marginally, for the labor supply
and transitory productivity shocks.

The ranking of variables in terms of their total information contributions is
determined by the relative size of the information gains in the part of the spectrum
from where a given shock receives the most total information (see Table 1). In several
cases, the ranking changes with the frequency band. For instance, △it contributes
significantly more information than rt with respect to the intertemporal preference
shock in the BC and high frequencies. At the same time, rt contributes the most
information with respect to the transitory interest rate shock in the low and BC
frequencies, in spite of being the least informative variable in the high frequencies
and overall. Similarly, △yt is the least informative variable overall with respect to
the transitory trend inflation shock, but has the largest contribution in the high
frequency band.

It is worth emphasizing that the information gains shown in Table 2 are from
observing a given variable conditional on already having observed the other two
variables. As the observed variables are obviously not mutually independent, it is
conceivable that in some cases the contributions are small because different variables
share common information with respect to those shocks. To help find out if and when
that is the case, Table 3 shows the unconditional information gains, i.e. the percent
reduction of uncertainty about a given shock due to observing only one variable at a
time.

The results reveal some notable differences between conditional and unconditional
information gains. Most striking is the reduction in the contributions of the three
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Table 3: Unconditional contribution of information
total low BC high

shock △yt rt △it △yt rt △it △yt rt △it △yt rt △it

ξt preference 3.5 84.6 66.0 0.9 69.6 44.0 2.0 14.6 18.9 0.6 0.4 3.1
θt labor supply 0.0 0.6 1.7 0.0 0.1 0.2 0.0 0.5 1.0 0.0 0.0 0.5
zt transitory productivity 0.0 0.6 1.6 0.0 0.1 0.1 0.0 0.5 1.0 0.0 0.0 0.5
gt permanent productivity 76.7 0.1 0.1 9.0 0.0 0.0 28.7 0.0 0.0 39.1 0.0 0.0
zm

t transitory interest rate 0.7 5.8 11.5 0.0 0.1 0.0 0.2 2.5 1.8 0.5 3.2 9.7
zm2

t transitory trend inflation 2.2 5.3 0.9 0.2 1.1 0.1 1.6 3.8 0.6 0.4 0.4 0.2
gm

t permanent trend inflation 1.8 0.4 6.8 0.1 0.0 2.5 0.9 0.3 1.3 0.8 0.1 3.0

Note: see the note to Table 2. The unconditional contribution of information shows the reduction of
uncertainty about a shock due to observing a single variable at a time.

observables with respect to the intertemporal preference shock. In particular, the
information gains from rt and △it change from, respectively, 85% and 66% uncondi-
tionally, to 27% and 7% conditionally. Similarly, the contribution of △yt decreases
from 3.5% to only 0.3%. This suggests that, to a large extent, the information in
either one of the observable variables is not unique to them but is also contained
in the other two. In other words, there is a significant degree of redundancy of the
information about the intertemporal preference shock. Another, less striking, example
of redundancy is the transitory interest rate shock, where the conditional information
gains from rt and △it are smaller than the unconditional ones.

Information redundancy is not the only possible consequence of the existing
interdependence among observables. In the case of the permanent productivity shock,
the conditional information gains for all variables are significantly larger than the
unconditional ones. The same is true for the contributions of rt and △it with respect
to the permanent and transitory trend inflation shocks, as well as for the contribution
of △yt with respect to the transitory interest rate shock. In all of these cases there is
a positive information complementarity instead of information redundancy, that is,
information increases when variables are observed together.

Following Iskrev (2019), the degree of information complementarity between
variables can be measured by comparing the joint information gain with respect to a
shock to the individual gains. Specifically, the information complementarity between
variables y1 and y2 conditional on variables y3 ⊂ {y \ y12} at frequency band ω is
defined as:

ICy12 →x|y3
(ω) =

IGy12 →x|y3
(ω)

IGy1 →x|y3
(ω) + IGy2 →x|y3

(ω) − 1. (3.5)

Negative values indicate negative complementarity, or information redundancy, be-
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tween y1 and y2, and positive values indicate positive complementarity between the two
variables. Since the information gain is non-negative, we have ICy12 →x|y3

(ω) ≥ −1/2,
with equality when y1 and y2 are (conditionally on y3) functionally dependent, in
which case IGy12 →x|y3

(ω) = IGy1 →x|y3
(ω) = IGy2 →x|y3

(ω). A lack of information
complementarity, i.e. ICy12 →x|y3

(ω) = 0 occurs when y1 and y2 are (conditionally on
y3) independent, and hence IGy12 →x|y3

(ω) = IGy1 →x|y3
(ω) + IGy2 →x|y3

(ω). Note that
the conditioning could be with respect to any subset of observables, including the
empty set, in which case we have unconditional complementarity between y1 and y2.

Figure 3 shows the unconditional and conditional information complementarities
between all pairs of variables. The results are shown for the full spectrum as well as
the three frequency bands. As already anticipated, the strongest complementarity
overall is between rt and △it, and is negative for all shocks except the permanent and
transitory trend-inflation shocks. Both unconditionally and conditionally the degree of
complementarity tends to be significantly lower in the higher frequencies. Conditioning
on the third observable in most cases preserves the sign of complementarity and
reduces the magnitude. There are some notable exceptions to this pattern, however.
For instance, the degree of complementarity between rt and △it increases when
conditioning on △yt,
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Figure 3: Pairwise information complementarity between observables with respect to
shocks.
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especially in the business cycle frequencies. Furthermore, the complementarity
between the same variables with respect to the transitory productivity shock changes
signs when conditioning on yt, from positive to negative in the low frequencies, and
from negative to positive in the high frequencies. At the same time, when evaluated
over the full spectrum, the complementarity is strongly negative unconditionally and
only weekly so, conditionally.

3.1.3 Information gains in the time domain

The time domain version of the full spectrum information gain measure (see equation
(2.20)) is given by:

IGY
T

→xt =
(

var(xt) − var(xt|YT )
var(xt)

)
× 100, (3.6)

where 1 ≤ t ≤ T and YT = {y1, . . . ,yT }. The difference between the two measures
is that, in the frequency domain, the information for any given xt stems from the
infinite past and future values of the observable variables. Therefore, for a given set
of observed variables, the total amount of information is invariant to the temporal
location of the latent variable. In contrast, in the time domain, it matters where the
location of t is, relative to the beginning and the end of the sample. Thus, the value
of time domain measure changes with t and is bounded from above by the value of
the full spectrum frequency domain measure.

Figure 4 compares the time and frequency domain information gains for the
seven shocks in the model. Specifically, it shows the ratio of the time domain to the
frequency domain measure for all values of t in a sample of T = 255 observations,
which is the sample size in Uribe (2022). The results show that for most values of t
the time and frequency domain information gains coincide. As anticipated, differences
occur only at the beginning and end of the sample. For all shocks except the transitory
trend inflation shock, for which convergence is somewhat slower, there are about ten
observations or fewer on either end of the sample where the time domain information
gains are smaller than the frequency domain ones.

3.1.4 Discussion of the results

As already noted, having more sources of uncertainty than the number of observed
variables necessarily implies that the latent variables in the model cannot all be
recovered fully. At the same time, as the results presented in Section 3.1.1 show, some
shocks in the Uribe (2022) model are significantly better recoverable than others.
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Figure 4: Total information gains in the time domain relative to the frequency domain
(full spectrum).

The goal of this section is to develop a further understanding of these findings.
A natural question to ask is: why are the information gains with respect to the

intertemporal preference and permanent productivity shocks so much larger than
the gains for the remaining shocks, and in particular compared to those with respect
to the labor supply and transitory productivity shocks? Intuitively, the amount
of information one or more variables contain about another variable depends on
the strength of their mutual dependence.8 Furthermore, an insight gained from the
frequency domain perspective is that the interactions need to be strong in the parts
of the spectrum that are mainly responsible for the uncertainty of the latent variable.
In addition, the extent to which information from multiple sources accumulates,
in turn, depends on how interdependent they are among themselves. For instance,
variables that are functionally dependent on other observed variables provide no
useful information.9

Consider the intertemporal preference shock (ξt). According to the posterior mean
estimates reported in Uribe (2022, Table 5), this shock is significantly more persistent
and volatile than all other shocks. In particular, its volatility is an order of magnitude

8In fact, the mutual information coefficient is commonly used to measure and test for statistical
dependence between random variables (see e.g. Linfoot (1957), Joe (1989), and Granger and Lin
(1994)).

9An example of this is output growth in the model estimated by Schmitt-Grohé and Uribe (2012),
see Iskrev (2019) for details.
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larger than the volatilities of all other shocks except the permanent productivity
shock (gt). The high degree of persistence explains why most of the uncertainty about
ξt is concentrated in the lower end of the spectrum, as shown in Table 1. Furthermore,
as seen from the same table, most of the uncertainty in the low frequencies is resolved
by the information contained in the observed variables, which suggests that there are
strong interactions between ξt and (some of) those variables. Since, in the present
context, the variables have a clear causal direction, i.e. from shocks to endogenous
variables, a natural way of describing their interactions is in terms of the shocks’
impact on the observed variables. A convenient measure of the size of the total
impact is each shock’s contribution to the total variance of each variable. Figure 5
shows the individual contributions of the shocks as a percent of the total variances of
the observables, as well as decompositions of the individual and total contributions
in the low, BC, and high frequency bands. Note that the measurement errors also
contribute to the variances, which is why the total contributions of the shocks sum
up to less than 100%.

The results show that ξt drives most of the volatility in two of the observed
variables – rt and △it, and, in the case of rt, the contribution is mostly in the low
frequencies. This
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Figure 5: Total and individual contributions of the shocks as a percent of the variances of
the observables in the full spectrum and the low, business cycle, and high frequency bands.
The difference to 100% is accounted for by the measurement error variances.
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is consistent with the earlier findings that, of the three observed variables, rt is the
most informative and △yt – the least informative one. Similarly, the second best
recoverable shock – to permanent productivity, is responsible for the bulk of the
volatility of the third variable – △yt, and particularly in the BC and high frequencies,
which, as seen in Table 1, is also where most of the uncertainty of that shock stems
from. The variance contributions of the remaining five shocks are significantly smaller,
and account for only between 12%, in the case of transitory interest rate shock (zm

t )
with respect to △it, and 2.3% − 2.4% in the case of both the labor supply (θt) and
transitory productivity (zt) shocks with respect again to △it.

Equivalence between variance and information decompositions. Variance
decompositions in dynamic structural models are typically obtained by shutting-off
all shocks but one at a time and then computing the endogenous variables’ variances
or spectral densities (see for instance Fernández-Villaverde et al. (2016, Section 8)).
This gives the contribution of each shock to the total variances or spectral densities of
the endogenous variables. It is easy to see that the same quantities can be obtained
using the information gain measures introduced in Section 2. Specifically, a shock’s
contribution to the variance of a variable is equal to the information gained, i.e. the
reduction in variance, with respect to the variable due to knowing that shock. In
other words, instead of information from observed variables to shocks, we measure
the flow of information in the opposite direction – from shocks to observables. Of
course, this only works when the shocks are mutually independent, which is also
the assumption behind the standard variance decomposition approach. If shocks are
mutually dependent one has to distinguish between conditional and unconditional
variance contributions, as in the case of information from observed variables with
respect to shocks.

To summarize, as expected, there is a clear link between, on the one hand, the
shocks’ contributions to the observed variables’ volatilities and, on the other hand,
the degree to which each shock can be recovered from information contained in
those variables. At the same time, it is important to point out that the size of the
contributions is not necessarily a good indicator of the variables’ importance as sources
of information about the shocks. For instance, the intertemporal preference shock
contributes similar fractions of the variances of rt and △it. Yet, rt is significantly
more informative than △it about that shock. As noted earlier, this is due to the
fact that the variance contributions are in different parts of the spectrum – the low
frequencies in the case of rt, and the BC and high frequencies, in the case of △it.
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Since most of the variance of the preference shock comes from the low frequencies,
rt is significantly more informative than △it. In other cases, it is the information
interactions among the observed variables that affect their relative importance as
sources of information. For instance, as can be seen in Table 2, the conditional
contribution of information by △it with respect to the transitory trend inflation shock
(zm2

t ) is much larger than that of △yt, in spite of the significantly larger fraction of
the variance of △yt attributed to that shock, compared to △it. This is explained by
the strong positive complementarity between rt and △it in the BC and especially
the low frequencies, which is where most of the uncertainty of that shocks is located.
Lastly, small variance contributions of a shock does not necessarily imply that the
shock cannot be recovered. In general, having the same number of non-redundant
observables as the number of sources of uncertainty means that all shocks are fully
recoverable. This is the case in the model I consider next.

3.2 Justiniano, Primiceri and Tambalotti (2011)

Justiniano et al. (2011) (henceforth JPT) investigate whether investment shocks are
major drivers of business cycle fluctuations. Building on their work in Justiniano
et al. (2010), they estimate a New Keynesian model featuring imperfectly competitive
goods and labor markets, along with various nominal and real frictions, including
sticky prices and wages, habit formation in consumption, variable capital utilization
and investment adjustment costs. As in the previous section, I outline only those
model features relevant to the subsequent information decomposition analysis..

The model has eight structural shocks, including three technology shocks, two
of which relate to investment. JPT distinguish between final and intermediate
consumption, investment, and capital goodsproduced in separate sectors. They
incorporate two distinct shocks: one affecting the transformation of consumption into
investment goods, and another affecting the transformation of investment goods into
productive capital. The investment-specific technology (IST) shock enters through
the production function in the investment goods sector:

It = ΥtY
I

t , (3.7)

where It represents the quantity of investment goods in efficiency units produced
using Y I

t units of the final good. Υt denotes the IST and follows a non-stationary
random process growing at rate υt.

The second investment technology shock enters through the capital goods sector’s
production technology, where new capital it is produced from investment goods
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according to:

it = µt

(
1 − S

(
It

It−1

))
(3.8)

represents an investment adjustment cost function and µt is a stationary shock to
the marginal efficiency of investment (MEI), following an AR(1) process.

The third technology shocks affects the production functions in the intermediate
good producing sector according to:

Yt(i) = max{A1−α
t Kt(i)αLt(i)1−α − AtΥ

α
1−α
t F ; 0} (3.9)

where Yt(i), Kt(i), and Lt(i) denote the output produced and the effective capital and
labor used by intermediate good producer i. F represents the fixed cost of production,
and At is a common non-stationary neutral technology process growing at rate zt.

The final consumption good Yt is produced by combining a continuum of interme-
diate goods, according to

Yt =
[∫ 1

0
Yt(i)

1
1+λp,t

]1+λp,t

(3.10)

where λp,t is a stationary price markup shock following an ARMA(1,1) process.
Similar to the model in the previous section, there is a shock to the intertemporal

preferences of households, whose lifetime utility function is given by

E0

∞∑
t=0

βtbt

 log (Ct − hCt−1) − φ
Lt(j)1+ν

1 + ν

, (3.11)

where Ct denotes consumption, bt is the stationary intertemporal preference shock
following an AR(1) process. JPT assume a continuum of households j ∈ [0, 1], each
supplying specialized labor Lt(j). The specialized labor is combined into homogenous
labor input according to

Lt =
[∫ 1

0
Lt(i)

1
1+λw,t

]1+λw,t

(3.12)

where λw,t is a stationary wage markup shock assumed to follow an ARMA(1,1)
process.

The final two shocks affect government fiscal and monetary policy. Public spending
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Gt is a time-varying fraction of output,

Gt =
(

1 − 1
gt

)
Yt (3.13)

where the government spending shock gt is a stationary AR(1) process.
Monetary policy sets the nominal interest rate Rt according to the following policy

rule:

Rt

R
=
(
Rt−1

R

)ρR

(πt

π

)ϕπ
(
Xt

X∗
t

)ϕX
1−ρR [

Xt/Xt−1

X∗
t /X

∗
t−1

]ϕdX

εmp,t, (3.14)

where emp,t represents the monetary policy shock, R denotes the nominal rate’s steady
state, πt is the inflation rate, Xt = Ct + It +Gt represents actual real GDP, and X∗

t

is GDP’s level under flexible prices and wages and in the absence of markup shocks.
To summarize, the model has eight shocks: six stationary and two non-stationary.

The price and wage markup shocks follow ARMA(1,1) processes, while the monetary
policy shock follows an i.i.d process. The government spending, MEI, and intertempo-
ral preference shocks, along with growth rates of IST and neutral technology shocks,
follow AR(1) processes. All shock disturbances are Gaussian, resulting in a linear
Gaussian state space representation of the solution of the log-linear approximation to
the model.

JPT estimate the model using US data on hours worked (ht = logLt), inflation
(πt), nominal interest rate (Rt), and the growth rates of GDP (xt = △ logXt),
consumption (ct = △ logCt), investment (it = △ log It), real wages (wt = △ log Wt

Pt
),

and relative price of investment (πi
t = △ log PIt

Pt
). Unlike Uribe (2022), they do not

allow for measurement errors in any of the series. This implies that all eight shocks
can be fully recovered from the eight observed variables. In this section, I examine
each shock’s main sources of information in terms of observed variables and spectral
components.

3.2.1 Information decomposition across frequency bands

Table 4 presents the total information gains for the eight shocks and their decomposi-
tions across low, BC, and high frequencies. All shocks can be fully recovered from
information in the observables, both in the full spectrum and within each frequency
band. The band-specific information contributions reflect the fraction of each shock’s
variance originating in those bands.

For six of the eight shocks uncertainty is distributed monotonically across the
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Table 4: Information decomposition across frequency bands
shock total low BC high

z neutral technology 100 11.2 = 100 × 0.11 40.0 = 100 × 0.40 48.8 = 100 × 0.49
g government 100 96.1 = 100 × 0.96 3.2 = 100 × 0.03 0.7 = 100 × 0.01
υ IST 100 8.4 = 100 × 0.08 33.6 = 100 × 0.34 58.0 = 100 × 0.58
λp price mark-up 100 51.7 = 100 × 0.52 16.1 = 100 × 0.16 32.2 = 100 × 0.32
λw wage mark-up 100 5.1 = 100 × 0.05 27.3 = 100 × 0.27 67.6 = 100 × 0.68
b preference 100 22.8 = 100 × 0.23 49.9 = 100 × 0.50 27.4 = 100 × 0.27
εmp monetary policy 100 6.3 = 100 × 0.06 27.1 = 100 × 0.27 66.7 = 100 × 0.67
µ MEI 100 47.4 = 100 × 0.47 40.8 = 100 × 0.41 11.7 = 100 × 0.12

Note: see the note to Table 1.

frequency bands, increasing or decreasing from low to high frequencies. The gov-
ernment spending shock’s uncertainty concentrates in low frequencies (96% of total
variance), while the MEI shock’s uncertainty primarily resides in low and BC fre-
quencies. Neutral technology, IST, wage mark-up, and monetary policy shocks show
uncertainty mainly in BC and high frequencies. For the intertemporal preference
shock, half of the uncertainty resides in the business cycle frequencies, with the
remainder distributed almost equally between low and high frequencies. The other
shock with a non-monotonic distribution of uncertainty is the price mark-up shock.
About half of its variance is attributable to low frequencies, with high frequencies
contributing significantly, and the smallest share of uncertainty arising from the
business cycle frequencies.

3.2.2 Information contributions by variables

Table 5 presents the conditional information gains for each observed variable across
the full spectrum and individual frequency bands. Three contributions stand out,
each exceeding 90%: the growth rate of the relative investment price (πi) for the IST
shock (υ), real wage growth (w) for the wage mark-up shock (λw), and the nominal
interest rate (R) for the monetary policy shock (εmp). As JPT demonstrate, the
price of investment in terms of consumption goods is the inverse of the IST process,
enabling full recovery of the IST growth rate from πi alone. The 97.2% conditional
information gain in the full spectrum implies that, without πi, the remaining variables
reduce uncertainty about υ by only 2.8%.

Beyond the IST shock, πi also contributes to information about the MEI shock,
though to a much lesser extent compared to other variables, particularly the investment
growth rate, which is the most informative variable for that shock. Output and
consumption growth rates are the primary sources of information for the government
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Table 5: Conditional contribution of information
shocks total low

x c i h w π R πi x c i h w π R πi

z neutral technology 15.6 0.0 0.2 46.4 0.0 0.0 0.0 0.1 0.9 0.0 0.1 1.5 0.0 0.0 0.0 0.0
g government 45.5 52.8 18.3 0.0 0.0 0.0 0.0 0.0 42.6 49.9 14.8 0.0 0.0 0.0 0.0 0.0
υ IST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1
λp price mark-up 13.7 0.2 0.3 21.4 29.3 32.4 0.2 0.2 11.0 0.0 0.2 9.1 27.3 0.5 0.0 0.1
λw wage mark-up 0.8 0.2 0.4 1.4 93.2 23.3 0.3 0.3 0.1 0.0 0.0 0.1 1.6 1.4 0.1 0.0
b preference 1.4 28.5 7.3 11.2 2.5 0.7 5.6 0.0 1.0 4.2 6.1 6.6 2.3 0.6 3.4 0.0
εmp monetary policy 0.3 3.1 0.2 10.2 0.1 12.1 92.6 0.0 0.1 0.1 0.0 1.5 0.0 4.4 4.8 0.0
µ MEI 0.1 0.0 8.7 0.4 2.2 0.4 5.2 1.9 0.0 0.0 3.9 0.1 2.0 0.1 3.2 1.2

shocks BC high

x c i h w π R πi x c i h w π R πi

z neutral technology 4.5 0.0 0.0 13.4 0.0 0.0 0.0 0.0 10.2 0.0 0.0 31.6 0.0 0.0 0.0 0.0
g government 2.5 2.6 3.0 0.0 0.0 0.0 0.0 0.0 0.5 0.3 0.5 0.0 0.0 0.0 0.0 0.0
υ IST 0.0 0.0 0.0 0.0 0.0 0.0 0.0 33.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.1
λp price mark-up 1.5 0.0 0.0 6.7 1.9 7.9 0.1 0.0 1.2 0.1 0.1 5.7 0.1 24.0 0.1 0.0
λw wage mark-up 0.3 0.1 0.1 0.4 24.6 8.7 0.2 0.2 0.4 0.1 0.2 1.0 67.1 13.2 0.1 0.1
b preference 0.1 10.0 1.1 2.7 0.2 0.2 1.8 0.0 0.2 14.3 0.1 2.0 0.0 0.0 0.4 0.0
εmp monetary policy 0.1 0.8 0.1 4.8 0.0 4.1 24.8 0.0 0.1 2.2 0.2 3.9 0.0 3.6 63.0 0.0
µ MEI 0.0 0.0 1.7 0.2 0.1 0.2 1.6 0.3 0.0 0.0 3.2 0.2 0.0 0.1 0.4 0.3

Note: see the note to Table 2. The observed variables are: the growth rates of output (y), consumption
(c), investment, and wages (w), the inflation rates for consumption (π) and investment (πi), hours
worked (h) and the nominal interest rate (r). Due to rounding in some cases the band-specific
contributions do not add up to the total values.

spending shock, while hours worked strongly informs the neutral technology shock.
Consumption growth is the most informative variable for the intertemporal preference
shock, while inflation is the most informative observable for the price mark-up shock.

Variables that provide the most information overall are typically the most infor-
mative within each frequency band, with some exceptions. One exception is wage
growth’s contribution to the price mark-up shock: it surpasses inflation’s contribution
in the low frequency band but falls below it in the business cycle and high frequencies,
and thus overall. Another notable exception is the intertemporal preference shock:
while consumption growth is the most informative variable overall, hours worked and
investment growth contribute significantly more in the low frequency band

Table 6 presents the unconditional information gains. As previously discussed,
the difference between conditional and unconditional information gains for a given
variable and shock indicates information complementarities between that variable and
other observables. These complementarities may be positive or negative, depending
on whether conditional gains exceed or fall below unconditional ones.

The strongest positive complementarity appears in the government spending
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Table 6: Unconditional contribution of information
shocks total low

x c i h w π R πi x c i h w π R πi

z neutral technology 17.4 20.1 7.3 24.3 28.7 24.4 9.6 0.0 5.4 6.1 2.7 0.6 7.5 2.0 0.6 0.0
g government 0.4 3.1 0.1 4.4 0.0 1.7 4.8 0.0 0.1 3.1 0.1 4.2 0.0 1.7 4.7 0.0
υ IST 1.3 0.1 2.0 0.6 0.1 0.1 0.2 100.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 8.4
λp price mark-up 1.8 0.3 4.4 4.8 18.1 39.3 3.6 0.0 1.3 0.3 3.8 4.3 8.3 6.2 1.5 0.0
λw wage mark-up 0.4 0.4 0.6 1.0 59.7 3.4 0.6 0.0 0.3 0.2 0.2 0.8 0.2 2.1 0.5 0.0
b preference 7.4 61.9 0.9 6.9 0.0 1.7 9.7 0.0 0.3 3.6 0.2 0.6 0.0 0.6 1.7 0.0
εmp monetary policy 3.5 1.2 2.8 3.1 0.0 1.7 57.6 0.0 0.2 0.1 0.1 0.3 0.0 0.4 0.2 0.0
µ MEI 47.2 10.3 73.1 56.3 3.4 9.7 51.6 0.0 16.5 8.4 28.2 24.9 2.8 4.9 30.4 0.0

shocks BC high

x c i h w π R πi x c i h w π R πi

z neutral technology 7.5 8.4 2.7 7.7 16.8 14.3 6.0 0.0 4.5 5.6 1.9 15.9 4.4 8.1 3.0 0.0
g government 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0
υ IST 0.2 0.0 0.3 0.1 0.0 0.0 0.1 33.6 1.0 0.0 1.7 0.5 0.0 0.0 0.0 58.0
λp price mark-up 0.3 0.0 0.3 0.3 3.6 7.2 0.6 0.0 0.3 0.0 0.3 0.2 6.2 25.8 1.5 0.0
λw wage mark-up 0.1 0.1 0.2 0.1 10.1 1.2 0.2 0.0 0.0 0.1 0.2 0.0 49.4 0.1 0.0 0.0
b preference 4.0 34.9 0.5 3.9 0.0 0.9 5.6 0.0 3.2 23.5 0.2 2.3 0.0 0.2 2.4 0.0
εmp monetary policy 1.1 0.4 0.8 1.2 0.0 0.7 8.1 0.0 2.2 0.7 1.9 1.6 0.0 0.6 49.3 0.0
µ MEI 24.6 1.9 34.6 26.6 0.6 4.4 20.2 0.0 6.1 0.1 10.4 4.7 0.0 0.4 1.0 0.0

Note: see the note to Table 3.

shock, where the highest unconditional gain (from R) is below 5%, while conditional
gains exceed 45% for c and x, and 18% for i. This results from the tight relationship
among x, c, i, and g in the economy’s resource constraint. Since g is latent, combined
information from pairs of observed resource constraint variables exceeds their individ-
ual contributions. This intuition is confirmed by the information complementarity
measure (equation (3.5)). The top panel of Figure 6 displays the largest absolute
unconditional and conditional information complementarities for the government
spending shock. The strongest positive complementarities occur between resource
constraint variable pairs. For example, the 3.2 value for x and c indicates that, given
the other six variables, their joint observation provides 2.2 times more information
about g than their individual contributions combined.

The bottom panel of Figure 6 shows the most significant complementarities for the
MEI shock. Comparing Tables 5 and 6 highlights the MEI shock as the strongest case
of negative information complementarities. The gain from i, the most informative
variable both conditionally and unconditionally, drops from over 70% unconditionally
to under 10% conditionally. Similarly, the gains from R, h, and x decrease from
about 50% to 5% or less. This suggests that much of the information these variables
provide about the MEI shock is shared with other observed variables. As Figure 6

34



-0.11

unconditional

-0.28 -0.27 -0.26 -0.25
-0.15 -0.13 -0.13 -0.11 -0.1

conditional

-0.41-0.36-0.34-0.31-0.28-0.23
-0.12

unconditional

-0.42
-0.31 -0.31 -0.29 -0.27 -0.26

-0.16

conditional

c, π
x, π c, h i, h h, R h, π c, i i, w x, w c, w x, i x, c
0.11 0.45 0.63 0.9 2.4 4.1 4.5 6.2 6.3

17
20

π, R x, h c, h x, w i, h i, w c, w h, π h, w
x, i x, c
0.19

3.2

i, h x, h x, i h, R i, R x, R c, w
i, w x, π x, w x, c c, π w, π

0.12 0.13 0.18 0.22 0.26

0.68

x, c x, i c, i x, w π, R h, w x, h

i, w

0.18

government

MEI

Figure 6: Largest pairwise information complementarities with respect to the government
spending and MEI shocks, full spectrum.

illustrates, combinations of i, R, h, and x show the strongest negative information
complementarity. For i and x, this stems from their strong interdependence with c

through the economy’s resource constraint. Indeed, negative complementarity should
exist between any two resource constraint variables (when the third is among the
conditional variables) for all shocks except g.10 Details appear in the Appendix, which
also presents pairwise complementarity coefficients for each frequency band. This
frequency analysis explains why overall information complementarity between c and
i for the g shock is zero, despite the expected strong mutual complementarity among
resource constraint variables. While complementarities among c, i, and x are strong
in BC and high frequencies, nearly all information about g resides in low frequencies,
where complementarity between c and i vanishes.

JPT conclude that the MEI shock is the key source of business cycle fluctuations
whereas the IST shock plays no role. In particular, they demonstrate that the MEI
shock accounts for substantial variance in GDP, investment, and hours at business
cycle frequencies, while IST shock contributions are negligible. Figure 7 shows variance
decompositions across frequency bands and overall shock contributions to observed
variables’ variances.11

10At the risk of belaboring the obvious, consider the case where g is also observed or where the g
shock has zero variance. Due to exact collinearity, information from any resource constraint variable
is completely redundant given the remaining resource constraint variables.

11JPT’s results appear in their Table 3. Several differences exist between their presentation and
Figure 7. JPT show variance contributions as fractions of total business cycle frequency variance,
while my plot shows fractions relative to the total variances in the full spectrum. For comparable
contributions, plot values must be multiplied by the fraction of the total variance of each shock due
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The results show that the MEI shock accounts for most of the variance in x, i,
and h across the full spectrum, not just in the BC frequencies. It also contributes
significantly to the volatility of R. This helps explain why R is the second most
informative variable about µ (Table 5). The MEI shock contributes 65% and 55% of
R’s total variance in the low and BC frequencies, respectively, where most uncertainty
about µ resides. Unlike the resource constraint variables, a smaller fraction of the
information in R is redundant. The small impact of the preference shock on c in the
low frequencies explains why c, despite being the most informative variable overall,
is less informative in these frequencies. Similarly, the fact that the wage mark-up
shock primarily contributes to w’s volatility in the high frequencies aligns with w’s
dominant role in providing information about that shock. Conversely, low frequencies
account for most of the uncertainty about the price mark-up shock, contributing more
than half of its total variance. Given that this shock’s contribution to h’s variance is
also concentrated in the low frequencies, this explains why h is as important as w
and π in the information it contributes about λp, despite the much smaller fraction
of h’s total variance due to that shock.

As seen earlier, the significance of h is even more pronounced in the case of the
neutral technology shock, where it provides the largest conditional contribution of
information among observables. This insight might not be readily apparent from
the variance decomposition results, which indicate that while more than half of z’s
contribution is to the low frequency component of the variance, only 0.3% of h’s total
variance comes from the high frequency contribution of that shock. However, the BC
and high frequencies account for nearly 90% of the total information about z, with
h contributing most of its information within the high frequency band. As detailed
in the Appendix, this finding stems from two key relationships: the strong positive
complementarity between h and x, and the strong negative complementarities among
x, c, and i, as well as between π and w, and π and R. This indicates substantial
redundancy in the information about z across variables for which this shock is an
important source of volatility. Moreover, while only 1% of h’s total variance originates
in the high frequency band, z accounts for 30% of this portion, making it the second
most important shock after µ for h in the high frequencies.

This observation further reinforces our earlier discussion regarding the Uribe (2022)
model, namely that the magnitude of variance contribution does not necessarily reflect
a variable’s significance as a source of shock information. Indeed, shocks can be fully

to the BC frequencies. Additionally, JPT show level decompositions for trending variables (x, c, i,
and w), whereas I present growth rates. Finally, the point estimates in JPT are the median values
of the posterior distributions of the contributions. I present decompositions at the posterior median
of the estimated model parameters.
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recoverable even when they contribute modestly to overall volatility. The JPT model
illustrates this phenomenon: despite the monetary policy shock accounting for no
more than 9.5% of any observable’s volatility, and the government spending shock
contributing at most 7.3%, both shocks remain fully recoverable.
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x c i h w π R πi

al
ls

ho
ck

s 22.4 30.4 19.6 79.8 21.5 46.7 63.4 8.4

52.3 45.9 58.9 19.2 33.7 35.4 33.5 33.6

25.3 23.7 21.5 1.0 44.7 17.9 3.1 58.0

z

23.2 30.4 8.4 6.6 33.1 22.2 8.1 0.0

9.9 17.0 3.0 3.8 14.6 6.3 3.1 0.0

11.0 10.7 4.5 2.5 14.9 12.9 4.7 0.0

2.4 2.7 0.9 0.3 3.6 3.0 0.2 0.0

g

7.3 2.2 0.1 2.1 0.0 0.5 1.1 0.0

0.1 1.2 0.0 1.5 0.0 0.4 0.9 0.0

1.8 0.8 0.0 0.4 0.0 0.1 0.3 0.0

5.4 0.2 0.0 0.1 0.0 0.0 0.0 0.0

υ

0.7 0.3 1.1 0.4 0.1 0.4 0.9 100.0

0.1 0.2 0.1 0.3 0.1 0.3 0.8 8.4

0.2 0.1 0.4 0.0 0.0 0.0 0.1 33.6

0.4 0.0 0.6 0.0 0.0 0.0 0.0 58.0

λp

2.0 0.2 2.2 6.8 21.1 34.6 2.1 0.0

0.8 0.1 0.9 6.2 4.9 6.4 0.9 0.0

1.0 0.0 1.1 0.6 7.5 14.2 1.0 0.0

0.2 0.0 0.2 0.0 8.7 14.1 0.1 0.0

λw

1.5 1.8 1.0 26.2 44.0 28.2 10.4 0.0

1.2 1.6 0.5 26.0 0.6 25.6 9.9 0.0

0.3 0.2 0.4 0.2 11.0 2.6 0.5 0.0

0.0 0.0 0.1 0.0 32.4 0.0 0.0 0.0

b

7.3 56.5 1.0 3.3 0.0 2.0 8.4 0.0

0.3 4.4 0.2 2.0 0.0 1.3 4.8 0.0

4.0 31.8 0.6 1.3 0.0 0.7 3.3 0.0

2.9 20.3 0.2 0.1 0.0 0.1 0.3 0.0

εmp

3.7 1.3 2.8 4.9 0.0 3.9 9.5 0.0
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Figure 7: Total and individual contributions of shocks to the variances of observables,
expressed as percentages, across the full spectrum and within the low, business cycle, and
high-frequency bands
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3.3 Angeletos, Collard and Dellas (2018)

The primary contribution of Angeletos et al. (2018) (henceforth ACD) lies in demon-
strating how to incorporate higher-order belief dynamics into a broad class of macroe-
conomic models in a tractable manner. This approach is illustrated through several
applications, including a medium-scale New Keynesian model, which I analyze in this
section. Apart from the incorporation of higher-order beliefs, this model shares many
features with the JPT model from the previous section and other medium-scale DSGE
models in the literature: habit persistence in consumption, investment adjustment
costs, variable capital utilization, price stickiness under Calvo pricing, monetary policy
governed by a Taylor rule, and a variety of shocks, including permanent and transitory
TFP shocks, permanent and transitory investment-specific shocks, a discount-rate
shock, a news shock about future productivity, a government-spending shock, and a
monetary policy shock.

From a modeling perspective, what distinguishes ACD from most of the litera-
ture is their departure from the assumptions of rational expectations and common
information about the state of the economy. Specifically, their framework introduces
autonomous variations in agents’ beliefs about other agents’ expectations (higher-
order beliefs) through what they call a “confidence shock”. This shock creates a
divergence between different forms of beliefs, generating short-term fluctuations in
agents’ expectations of economic outcomes while leaving their medium- and long-
term expectations unaffected. Notably, these fluctuations do not alter expectations
about exogenous fundamentals at any horizon. ACD argue that incorporating this
mechanism into standard DSGE models enhances their ability to replicate observed
patterns in macroeconomic data.

In the remainder of this section, I evaluate the sources and distribution of infor-
mation about the shocks in the ACD model. The model has nine shocks, most of
which – except for the confidence shock – are defined similarly to those in the JPT
model. A key difference, however, is that the level of TFP in the ACD model consists
of both permanent and transitory components, whereas the JPT model includes only
a permanent component. Additionally, ACD introduce a one-quarter-ahead news
component to the permanent TFP term, modeled as an exogenous stationary AR(1)
process.

The model equations closely parallel those presented in Section 3.2, and a detailed
exposition is deferred to the Appendix. While the incorporation of higher-order beliefs
alters the model’s solution approach compared to standard rational expectations
models, this modification primarily manifests in the presence of two types of expecta-
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tions within standard equilibrium conditions. Specifically, some decisions are based
on agents’ beliefs that others’ expectations are biased, while other decisions are made
after the true state of nature and the realized values of economic activity become
publicly known. The perceived bias in expectations is captured by the commonly
observed confidence shock. For further details, see Section C in the Appendix and
the original work of Angeletos et al. (2018).

ACD estimate the model using six quarterly US data series: GDP, consumption,
investment, hours worked, the inflation rate, and the federal fund rate. The estima-
tion is conducted in the frequency domain, focusing exclusively on business cycle
frequencies. This approach represents another departure from the common practice
in the literature, where time-domain methods are predominantly used. The authors
justify their choice by emphasizing that their model is specifically designed to capture
business cycle phenomena and, therefore, lacks the features and mechanisms necessary
to explain the lower and higher frequency components of the data.

In the next section, I will examine the implications of this estimation approach
and explore possible interpretations of the information decomposition in this context.

3.3.1 Information decomposition across frequency bands and observables

Table 7: Information decomposition across frequency bands
shock total low BC high

ap permanent TFP 99.7 98.6 = 99.9 × 0.99 1.0 = 90.2 × 0.01 0.1 = 62.5 × 0.00
an news 43.2 5.8 = 59.1 × 0.10 18.3 = 49.3 × 0.37 19.1 = 36.0 × 0.53
aτ transitory TFP 30.2 0.7 = 4.6 × 0.15 10.7 = 23.5 × 0.45 18.8 = 47.3 × 0.40
ζIP permanent investment 91.5 91.5 = 92.7 × 0.99 0.1 = 6.3 × 0.01 0.0 = 6.6 × 0.00
ζIT

t transitory investment 92.5 10.3 = 76.2 × 0.14 42.1 = 96.0 × 0.44 40.1 = 94.0 × 0.43
ζc discount factor 98.6 64.9 = 99.4 × 0.65 27.5 = 98.0 × 0.28 6.2 = 93.9 × 0.07
ζg fiscal 93.2 39.7 = 90.6 × 0.44 41.3 = 95.8 × 0.43 12.3 = 93.5 × 0.13
ζm monetary policy 97.4 25.5 = 92.9 × 0.27 49.2 = 98.7 × 0.50 22.7 = 99.7 × 0.23
ξ confidence 96.7 51.8 = 98.8 × 0.52 36.1 = 96.2 × 0.38 8.8 = 87.4 × 0.10

Note: see the note to Table 1.

Consider Table 7 which presents the results of applying the information decompo-
sition to the shocks in the ACD model. These results can be interpreted in multiple
ways, depending on one’s perspective regarding the model’s ability to represent the
empirical data. First, assuming the model is correctly specified across all frequencies
of the observed time series, the table illustrates how information about the shocks
is distributed across the low, business cycle, and high-frequency bands, as well as
the total information obtained about each shock. This interpretation mirrors the
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earlier analysis of Tables 1 and 4 for the Uribe and JPT models, respectively. Such a
perspective enables conclusions about the sources of identification for the shocks in
the ACD model, similar to the approach taken for those models.

Second, one may adopt the perspective, as ACD do, that the model is misspecified
outside the BC frequencies and focus solely on those frequencies, disregarding the
rest of the spectrum. From this viewpoint, the key question is how much of the
uncertainty associated with the shocks originating in the BC frequencies is resolved by
the information provided by the observed variables within that frequency band. The
answer lies in the information gains at BC frequencies, shown in the middle of the
fourth column of Table 7. Although no shock’s prior uncertainty is completely resolved,
the information gains exceed 90% for six shocks, reaching 98% for the discount factor
and monetary policy shocks. In contrast, the least amount of information, only 6%,
is obtained for the permanent investment-specific technology shock, followed by the
transitory TFP and news shocks, with information gains of approximately 24% and
49%, respectively.

It is worth noting that for the latter two shocks, the information gains at BC
frequencies are comparable to those over the full spectrum – 32% and 43%, respec-
tively. However, for the permanent investment-specific technology shock, the total
information gain is much higher, at 92%. This discrepancy reflects the fact that 99%
of the uncertainty associated with this shock originates in the low-frequency band,
where the information gain is nearly 93%.

Table 8: Conditional information gains
shock all BC

Y C I N π R Y C I N π R

ap permanent TFP 0.9 0.5 1.1 1.2 0.0 0.1 26.6 0.1 1.0 37.3 0.0 0.3
an news 10.7 2.2 0.7 11.4 0.1 2.7 15.0 0.5 0.9 19.4 0.0 1.4
aτ transitory TFP 2.0 0.3 2.4 11.5 0.3 1.7 1.0 0.4 2.6 8.6 0.2 2.3
ζIP permanent investment 2.1 10.1 15.3 0.7 0.3 3.1 0.8 1.0 2.2 0.8 0.1 1.0
ζIT

t transitory investment 0.2 10.1 32.7 1.2 0.8 1.2 0.3 12.4 24.8 0.1 0.5 1.6
ζc discount factor 1.6 2.1 0.2 11.3 13.0 8.7 2.3 2.9 0.2 20.0 23.0 17.8
ζg fiscal 65.5 53.9 70.2 10.1 0.1 0.7 62.0 55.9 71.9 9.8 0.0 0.1
ζm monetary policy 3.2 3.4 0.4 19.1 71.6 67.4 1.6 1.8 0.1 13.0 70.1 66.7
ξ confidence 5.4 19.1 0.1 10.4 3.2 3.4 4.7 23.2 0.1 9.2 3.3 4.6

Note: The conditional information gain measures the marginal reduction of uncertainty about a
shock due to observing a variable relative to observing the other five variables, as a percent of the
unconditional uncertainty of the shock. The observed variables are: output (Y ), consumption (C),
investment (I), hours worked (N), inflation (π) and the nominal interest rate (R).

The relative importance of observed variables for each shock can be determined
by examining their respective information gains across both BC frequencies and the
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full spectrum, as shown in Table 8. Unlike Tables 2 and 5, the BC panel in this table
reports how much of the uncertainty originating specifically in the BC frequencies is
resolved by the information contained in the observed variables, rather than showing
BC frequencies’ contributions to total information. It is the appropriate metric when
the model is deemed suitable for explaining only the BC frequencies of the data.

Comparing the two sets of information gains, the rankings of the most informative
variables for each shock are nearly identical in the full spectrum and the BC frequencies.
A notable exception is the permanent TFP shock (ap), where output (Y ) is significantly
more informative than investment (I) at BC frequencies, whereas I is more informative
in the full spectrum. For this shock, as well as for the transitory TFP (aτ ) and news
(an) shocks, hours worked (N) provides the largest contribution of information. N
also contributes substantially to the discount factor (ζc) and confidence (ξ) shocks,
providing the second largest contributions for these shocks after inflation (π) and
consumption (C), respectively. For the government spending shock (ζg), Y , C, and I
are the three most significant sources of information. This pattern, also observed in
the JPT model, reflects the resource constraint equation linking these variables to ζg.

Inflation (π), followed by the nominal interest rate (R), are the most informative
variables for the monetary policy shock (ζm). This result is consistent with the JPT
model (see Table 5), although in that model, R provides the largest contribution by
a considerable margin. Lastly, as expected, I is the most informative variable for the
two investment-specific shocks (ζIP and ζIT

t ).
As previously discussed, the rationale for excluding frequencies outside the BC

range is to avoid biased parameter estimates due to contaminated information from
parts of the spectrum where the model is misspecified.12 The same reasoning applies
to the estimation of shocks and other latent variables: using contaminated information
leads to distorted estimates of these variables, even when the true values of model
parameters are known.

The extent and nature of these distortions depend on what mechanisms operate
at the low and high frequencies of the data but are absent from the theoretical
model. These factors are model- and data-specific. At the same time, it is clear that
the greater the reliance on contaminated information during estimation, the more
severe the impact of misspecification will be on the results. For instance, Table 7
shows that model misspecification at the lower end of the spectrum would have a
greater impact on the estimates of shocks with larger contributions from the lower

12Hansen and Sargent (1993) and Diebold et al. (1998) make similar arguments and develop
band-spectral estimation methods. See also Christiano and Vigfusson (2003), Sala (2015), and Qu
and Tkachenko (2012).
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frequencies, such as the permanent investment-specific shock, compared to shocks
with smaller contributions, like the transitory investment-specific shock. Conversely,
misspecification at high frequencies would have a greater impact on the transitory
investment-specific shock than on the permanent one.

4 Concluding Comments

I have shown how to decompose the frequency domain information observables
provide with respect to latent variables in dynamic macroeconomic models. Through
this analysis, researchers can determine where in the spectrum information about
latent variables predominantly comes from, and evaluate the relative contributions of
individual observed variables. The examples I have presented illustrate how reporting
the results from such analysis can make the estimation of shocks and other latent
variables more transparent. Researchers often disagree on the specific model features
needed to adequately represent the data. In particular, there is no consensus on which
data frequencies macroeconomic models should aim to represents, or are capable
of representing. Whilst much of the empirical literature is focused on explaining
business cycle phenomena, models are usually estimated in the time domain, which is
tantamount to using the full spectrum. The Uribe and JPT models I have considered
are only two cases in point. Even if not explicitly stated, the time domain approach
implicitly assumes that models are capable of representing all frequencies in the
data. Presenting readers, who may have divergent views on model adequacy, with
information on the relative importance of different frequencies will allow them to
assess the potential consequences of using contaminated information due to model
misspecification.

Another issue over which researchers may disagree concerns the extent to which
observed time series adequately represent theoretical variables in macroeconomic
models. The existence of multiple empirical counterparts to variables like output,
inflation, wages, hours worked, etc. suggests that each should be treated as a noisy
indicator of the underlying theoretical concept. This supports the argument in favor
of treating these variables as measured with errors.13 Yet, measurement errors are
not universally present in estimated models, as demonstrated by the JPT and ACD
examples. Such an omission could be interpreted by some readers as a reason to
suspect that models are misspecified with respect to particular observed variables.

13An earlier statement of this argument was made by Boivin and Giannoni (2006) who proposed
incorporating structural macroeconomic models into a dynamic factor framework where multiple
imperfectly measured indicators correspond to each model concept.
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Based on the perceived nature of the errors, one can draw a conclusion about which
frequencies are most affected. Knowing how important those frequencies are as a
source of information can help readers better understand the consequences of the
failure to account for the imperfect match between theoretical concepts and empirical
time series. For instance, pure measurement errors are often modeled as white noise
processes, and therefore the contamination is concentrated in the higher end of the
spectrum. As a result, estimates that rely more heavily on information from the
high frequencies will be compromised more severely. Similarly, perceived failure to
adequately account for low frequency variations in some series would cause some
readers to be sceptical of estimates that are more dependent on information from the
lower end of the spectrum.14

Lastly, the methodology described in this paper can help researchers who develop
and estimate structural macroeconomic models by revealing, in cases of information
deficiency, what type of information is needed to better recover unobserved variables
of interest. Having well-identified structural shocks and unobserved endogenous
variables, such as potential output or natural rate of interest, is a key requirement
for macroeconomic models to be useful as tools for policy analysis and to be credible
as story-telling devices.

14One commonly cited example of this is the series for aggregate hours worked, which contains
significant low-frequency variations attributed to demographics and other structural developments
in the labor market that are absent from most business cycle models. See the discussion of Figure 5
in Angeletos et al. (2018).
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Appendix

A Uribe (2021) model

Table A1: Parameter values, Uribe (2021) model
parameter posterior mean

ϕ price stickiness 146.000
απ coeff inflation in monetary policy rule 2.320
αy coeff output in monetary policy rule 0.188
γm backward-looking component in inflation 0.606
γI coeff lagged interest rate in monetary policy rule 0.242
δ habit formation 0.258
ρξ AR preference 0.915
ρθ AR labor supply 0.708
ρz AR transitory productivity 0.700
ρg AR permanent productivity 0.221
ρgm AR permanent trend inflation 0.248
ρzm AR transitory interest rate 0.306
ρzm2 AR transitory trend inflation 0.796
σξ std. preference 0.0287
σθ std. labor supply 0.00164
σz std. transitory productivity 0.00122
σg std. permanent productivity 0.00758
σgm std. permanent trend inflation 0.000848
σzm std. transitory interest rate 0.000832
σzm2 std. transitory trend inflation 0.00131
σme

1 std. measurement error△yt 4.46e-06
σme

2 std. measurement errorrt 4.55e-06
σme

3 std. measurement error △it 1.74e-07
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B Justiniano, Primiceri and Tambalotti (2011)

Table B1: Parameter values, JPT (2011) model
parameter posterior median

α capital share 0.169
ιp price indexation 0.113
ιw wage indexation 0.102
h consumption habit 0.864
λp SS mark-up goods prices 0.177
λw SS mark-up wages 0.166
ν inverse frisch elasticity 5.162
ξp Calvo prices 0.783
ξw Calvo wges 0.773
χ Elasticity capital utilization cost 5.491
S

′ Investment adjustment costs 3.017
ϕπ Taylor rule inflation 1.735
ϕY Taylor rule output 0.059
ρR Taylor rule smoothing 0.863
ρz AR neutral technology growth 0.286
ρg AR government spending 0.990
ρν AR IST growth 0.148
ρp AR price mark-up 0.978
ρw AR wage mark-up 0.968
ρb intertemporal preference 0.583
θp MA price mark-up 0.793
θw MA wage mark-up 0.990
ϕdy Taylor rule output growth 0.199
ρµ AR MEI 0.807
σmp std. monetary policy 0.216
σz std. neutral technology growth 0.943
σg std. government spending 0.362
σν std. IST growth 0.634
σp std. price mark-up 0.222
σw std. wage mark-up 0.310
σb std. intertemporal preference 0.038
σµ std. MEI 5.691
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Figure B1: Largest unconditional pairwise information complementarities, all frequencies.
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Figure B2: Largest unconditional pairwise information complementarities, low
frequencies.
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Figure B3: Largest unconditional pairwise information complementarities, BC
frequencies.
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Figure B4: Largest unconditional pairwise information complementarities, high
frequencies.
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Figure B5: Largest conditional pairwise information complementarities, full spectrum.
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Figure B6: Largest conditional pairwise information complementarities, low spectrum.
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Figure B7: Largest conditional pairwise information complementarities, BC spectrum.
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Figure B8: Largest conditional pairwise information complementarities, high spectrum.
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C Angeletos, Collard and Dellas (2018)
C.1 Linearized equilibrium conditions

The economy consists of a continuum of islands and a mainland. Each island
contain a representative household and a continuum of monopolistically competitive
firms producing a differentiated commodity using labor and capital provided by
the household. These commodities are combined through a CES aggregator into
an island-specific composite good, which in turn enters the production of the final
good in the mainland through another CES aggregator. The final good is used for
consumption and investment. The log-linearized equilibrium conditions with variables
presented as log-deviations from their steady-state values are summarized as follows:

Optimal consumption allocation

Eit [ζc
t + νnit] = ζc

t − cit − bCt−1

1 − b
+ Eit [sit + ϱYt + (1 − ϱ)yit − nit] , (C.1)

where cit and Ct are consumption on island i and aggregate consumption, yit and Yt

are the quantity of the final good produced in island i and aggregate output, nit is
hours worked, sit denotes the realized markup in island i, and ζc

t is a preference shock.
The parameter ν determines the inverse labor supply elasticity, and the parameters b
and ϱ denote the degree of habit persistence, and the degree of substitutability across
the islands’ composite goods in the production of the production of the final good,
respectively.

Optimal investment decision

Eit [λit + qit] = Eit [λit+1 + β(1 − δ)qit+1 + (1 − β(1 − δ))(sit+1 + ϱYt+1

+ (1 − ϱ)yit+1 − uit+1 − kit+1)] (C.2)

where qit is the price of capital, uit is the rate of capital utilization, and λit is the
marginal utility of consumption, given by

λit = ζc
t − cit − bCt−1

1 − b
(C.3)

The parameter β is the intertemporal discount rate in the utility function of the
households, and δ is the depreciation rate.

Optimal bond holdings decision

Rt = ζc
t − (1 + ν)nit − sit − ϱYt − (1 − ϱ)yit − E′

it[λit+1 − πit+1] (C.4)

where Rt is the nominal interest rate and πit is the inflation rate in island i.

Equilibrium price of capital

qit = (1 + β)φιit + φιt−1 − βφE′
it ιit+1 + ζIP

t − ζIT
t (C.5)
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where iit denotes the level of investment, ζIP
t is non-stationary investment-specific

technology shock, ζIT
t is a stationary shock shifting the demand for investment, and

φ is a parameter governing the size of investment adjustment costs.

Production function

yit = ζA
t + α(uit + kit) + (1 − α)nit (C.6)

where kit is the local capital stock, ζA
t is the level of aggregate TFP, and α is the

share of capital in the production function. The capital accumulation equation is

kit+1 = (1 − δ)kit + δ(ζIT
t + ιit), (C.7)

and level of TFP is the sum of a permanent (ap
t ) and a transitory (aτ

t ) component:

ζA
t = ap

t + aτ
t , (C.8)

Resource constraint

ϱyt + (1 − ϱ)yit = xit + αuit, (C.9)

where xit denotes GDP on island i, given by

xit = sccit + (1 − sc − sg)(ζIP
t + ιit) + sgGt, (C.10)

and Gt, sc and sg denote the level of government spending and the steady-state ratios
of consumption and government spending to output. To ensure the existence of a
balanced growth path, government spending is defined as

Gt = ζg
t + 1

1 − α
ap

t − α

1 − α
ζIP

t (C.11)

where ζg
t a government spending shock.

Equilibrium utilization

ζIP
t + 1

1 − ψ
uit = sit + ϱyt + (1 − ϱ)yit − kit, (C.12)

where ψ is a capital utilization elasticity parameter.

Inflation rate

πit = (1 − χ)(1 − βχ)
χ (1 + χ(1 − β))sit + βχ(1 − χ)πt + βχE′ πit+1

χ (1 + χ(1 − β)) , (C.13)

where Πit is the aggregate inflation rate, and (1 − χ) is the probability that a firm
resets its price in a given period.
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Monetary policy rule

Rt = κRRt−1 + (1 − κR)(κππit + κy(xit − xF
it)) + ζm

t (C.14)

where xF
it denotes the GDP that would be attained in a flexible-price allocation, ζm

t

is a monetary policy shock, κπ and κy are parameters determining the policy rate
reaction to inflation and the output gap and κRi controls the degree of interest-rate
smoothing. The flexible-price allocations are obtained from equations (C.1) – (C.12)
by setting the realized markup to zero (sit = 0) and replacing Rt in (C.4) with the
real interest rate.

It is worth pointing out that there are two different subjective expectation operators
Eit and E′

it in the above conditions. In the model, each time period t is divided into
two stages: in stage 1, the inhabitants of each island receive an unbiased signal about
the level of TFP in that period, and form beliefs that firms and households on other
islands receive a signal that is biased by the confidence shock ξt, which is also observed.
In stage 2, the true state of nature and the realized value of economic activity is
publicly revealed. ACD discuss two protocols for the timing of decisions of firms
and households, depending on whether supply is determined first and prices adjust
to make demand meet supply, or whether demand is determined first and supply
adjusts to meet demand. The model presented above is estimated under the second
assumption, as seen by the use of stage 1 expectations in the optimality conditions
for consumption and saving in equations (C.1), (C.2), and stage 2 expectations in
equations (C.4), (C.5), (C.13).

There are nine shocks in the model: a permanent (ap
t ) and a transitory (aτ

t ) TFP
shock; a permanent (ζIP

t ) and a transitory (ζIT
t ) investment-specific shock; a news

shock regarding future productivity (an
t ); a discount-rate shock (ζc

t ); a government-
spending shock (ζg

t ); a monetary policy shock (ζm
t ); and a confidence shock (ξt).

The later shock is an exogenous random variable observed in stage 1 of each period,
representing the perceived bias in the other islands’ signals about the level of TFP in
that period. The permanent TFP shock is given by

ap
t = ap

t−1 + an
t−1 + εp

t , (C.15)

and the permanent investment-specific shock follows a random walk

ζIP
t = ζIP

t−1 + εIP
t , (C.16)

where εp
t and εIP

t are i.i.d. innovations. All remaining shocks are stationary AR(1)
processes.
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Table B1: Parameter values, ACD (2018) model
parameter posterior median

ψ utilization elasticity 0.500
ν inverse labor supply elasticity 0.282
α capital share 0.255
φ investment adjustment costs 3.312
b habit persistence 0.758
χ Calvo parameter, 0.732
κR Taylor rule smoothing, 0.198
κπ Taylor rule inflation, 2.271
κy Taylor rule output, 0.121
ρm AR mon. policy 0.647
ρa AR transitory TFP component 0.412
ρn AR news 0.224
ρi AR transitory investment-specific technology 0.374
ρc AR preference 0.888
ρg AR government spending 0.786
ρξ AR confidence 0.833
σP

a std. permanent TFP component 0.406
σT

a std. transitory TFP component 0.347
σn std. news 0.378
σP

i std. permanent investment-specific technology 0.610
σT

i std. transitory investment-specific shocks 5.805
σc std. preference 0.357
σg std. government spending 1.705
σξ std. confidence 0.613
σm std. mon. policy 0.313
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